Polarized Parton Distributions Measured rmes Experiment at the

Jürgen Wendland June 21, 2004

- Polarized Deep-Inelastic Scattering
- The HERMES Experiment at HERA
- **Asymmetry Measurements**
- Polarized Parton Distributions
- The Spin Carried by the Quark Spins

The Proton Spin Crisis

Relativistic quark models:

 $\Delta \Sigma = \Delta u_v + \Delta d_v + \Delta q_s \approx 0.6$

First measurements by EMC in 1988 found

 $\Delta \Sigma = 0.006 \pm 0.058 \pm 0.117$

- \Rightarrow "Proton Spin Crisis"
- More recently:

 $\Delta \Sigma = 0.23 \pm 0.04 \pm 0.06$ (E155 in 2000) $\Delta \Sigma = 0.167 \pm 0.169 \pm 0.150$ (HERMES in 2003)

Spin carried by quark, gluon spins, and their orb. ang. momenta:

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + L_q + (\Delta G + L_g)$$

Polarized Deep-Inelastic Scattering

Inclusive DIS: $e + N \rightarrow e' + X$

 $x \stackrel{\text{lab}}{=} Q^2 / (2M(E - E'))$ $Q^2 \stackrel{\text{lab}}{=} 4EE' \sin^2(\theta/2)$

Polarized Deep-Inelastic Scattering

HERMES

- Large forward acceptance
- Excellent particle identification (e^{\pm} , π^{\pm} , K^{\pm} , p, \bar{p})

Cross Section Asymmetries

Ν

$$\begin{split} A_1(x,Q^2) \simeq \frac{1}{D} & \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}} \\ \equiv A_{\parallel}(x,Q^2) \end{split}$$

Inclusive DIS:

$$A_1(x,Q^2) = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} \stackrel{\text{QPM}}{=} \frac{\sum_q e_q^2 \, \Delta q(x,Q^2)}{\sum_{q'} e_{q'}^2 \, q'(x,Q^2)}$$

Cross Section Asymmetries

$$\Delta q \equiv q^+ - q^-$$
$$q \equiv q^+ + q^-$$

$$A_1^h(x,Q^2) \simeq \frac{1}{D} \underbrace{\frac{\sigma^{h\uparrow\downarrow} - \sigma^{h\uparrow\uparrow}}{\sigma^{h\uparrow\downarrow} + \sigma^{h\uparrow\uparrow}}}_{\equiv A_{\parallel}^h(x,Q^2)}$$

Semi-Inclusive DIS:

$$A_1^h(x,Q^2) = \frac{\sigma_{1/2}^h - \sigma_{3/2}^h}{\sigma_{1/2}^h + \sigma_{3/2}^h} \stackrel{\text{QPM}}{=} \frac{\sum_q e_q^2 \,\Delta q(x,Q^2) \,\int dz \, D_q^h(z,Q^2)}{\sum_{q'} \, e_{q'}^2 \, q'(x,Q^2) \,\int dz \, D_{q'}^h(z,Q^2)}$$

Detector and QED Rad. Effects

Detector effects: Multiple scattering ...

higher order QED effects: Bremsstrahlung ...

E.g.

Elastic scattering can appear to be DIS

Detector and QED Rad. Effects

Detector effects: Multiple scattering ...

higher order QED effects: Bremsstrahlung ...

 $Q_X^2 \neq Q_B^2$ $x_X \neq x_B$

E.g.

Elastic scattering can appear to be DIS

Simulate effects in Monte Carlo that keeps track of measured and of Born kinematics.

Unfolding Kinematic Migration

From the MC data in bins of x:

- Compute matrices n_±(i, j)
 i...measured kinematics
 j...Born kinematics
- Form

$$\mathcal{S}_{\pm}(i,j) \equiv \frac{\partial \sigma_{\pm}^X(i)}{\partial \sigma_{\pm}^B(j)} = \frac{n_{\pm}(i,j)}{n_{\pm}^B(j)}$$

Inclusive migration matrix

$$A_{\parallel}^{B}(j) = -1 + \sum_{i=1}^{N_{X}} \frac{2 \mathcal{S}^{-1}(j,i)}{n_{u}^{B}(j)} \left[A_{\parallel}^{X}(i) n_{u}^{X}(i) - n_{p}(i,0) + \sum_{k=1}^{N_{B}} \mathcal{S}_{+}(i,k) n_{u}^{B}(k) \right]$$

Born Asymmetries on the Proton

Born Asymmetries on the Deuteron

The Purity Formalism

Rewrite semi-inclusive asymmetry in QPM:

$$A_{1}^{h}(x) \simeq \frac{\sum_{q} e_{q}^{2} \Delta q(x) \int dz \, D_{q}^{h}(z)}{\sum_{q'} e_{q'}^{2} q'(x) \int dz \, D_{q'}^{h}(z)} = \sum_{q} \underbrace{\frac{e_{q}^{2} q(x) \int dz \, D_{q}^{h}(z)}{\sum_{q'} e_{q'}^{2} q'(x) \int dz \, D_{q'}^{h}(z)}}_{\equiv P_{q}^{h}(x)} \frac{\Delta q}{q}(x)$$

 $P_q^h(x)$ are known from UNPOLARIZED MC

Combine inclusive and semi-inclusive asymmetries and fit for quark polarizations $(\Delta q/q)(x)$,

$$\leadsto \Delta u(x)$$
, $\Delta d(x)$, $\Delta \bar{u}(x)$, $\Delta \bar{d}(x)$, $\Delta s(x)$

The Polarized Parton Densities

The Spin Carried by the Quarks

In Measured Range:

$$\Delta q(Q_0^2 = 2.5 \,\mathrm{GeV}^2) = \int_{0.023}^{0.6} dx \,\Delta q(x, Q_0^2 = 2.5 \,\mathrm{GeV}^2)$$

 $\Delta u(Q_0^2) = 0.601 \pm 0.039 \pm 0.049 \quad \Delta d(Q_0^2) = -0.226 \pm 0.039 \pm 0.050$

 $\Delta \bar{u}(Q_0^2) = 0.002 \pm 0.036 \pm 0.023 \quad \Delta \bar{d}(Q_0^2) = -0.054 \pm 0.033 \pm 0.011$

$$\Delta s(Q_0^2) = 0.028 \pm 0.033 \pm 0.009$$

$$\Delta\Sigma(Q_0^2) = \sum_q \Delta q(Q_0^2) = 0.347 \pm 0.024 \pm 0.066$$

Summary

- Semi-)inclusive asymmetries on the proton and the deuteron
- Pion and kaon asymmetries measured for the first time
- A new algorithm to correct for QED rad. and detector effects
- $\Delta u(x,Q_0^2)$ and $\Delta d(x,Q_0^2)$ measured with high precision
- Sea polarizations decomposed for the first time: $\Delta \bar{u}(x, Q_0^2) \simeq 0$, $\Delta \bar{d}(x, Q_0^2) \simeq 0$, $\Delta s(x, Q_0^2) \simeq 0$
- The total spin carried by the quark spins:

$$\Delta\Sigma(Q_0^2) = \sum_q \int_{0.023}^{0.6} dx \Delta q(x, Q_0^2) = 0.347 \pm 0.024 \pm 0.066$$

Summary

- Semi-)inclusive asymmetries on the proton and the deuteron
- Pion and kaon asymmetries measured for the first time
- A new algorithm to correct for QED rad. and detector effects
- $\Delta u(x,Q_0^2)$ and $\Delta d(x,Q_0^2)$ measured with high precision
- Sea polarizations decomposed for the first time: $\Delta \bar{u}(x, Q_0^2) \simeq 0$, $\Delta \bar{d}(x, Q_0^2) \simeq 0$, $\Delta s(x, Q_0^2) \simeq 0$
- The total spin carried by the quark spins:

$$\Delta\Sigma(Q_0^2) = \sum_q \int_{0.023}^{0.6} dx \Delta q(x, Q_0^2) = 0.347 \pm 0.024 \pm 0.066$$

Thanks to the students, staff & faculty at SFU, TRIUMF & DESY