

The VUVS-FEL is a unique light source

Pulse length 30-100 fs
Wavelength shorter than 100 nm
Gigawatt peak power
Fully coherent beam
Powerdensity > 10¹⁴Watt/cm²

Multi-photon processes Optical non-linear processes Pump probe experiments

> 1000 times higher peak brilliance than any other source at this wavelength

Interaction of Intense Soft X-rays with Matter

laser-atom process at I ~ 10^{14} W/cm², ponderomotive energy 10-100 eV

P. Bucksbaum et al

- Field modulates the atomic potential at visible laser frequency
- Outer e⁻ has time to tunnel or overcome the barrier: 2U_p > I_p where U_p ~ Iw-²

VUV FEL laser-atom process at I ~ 10¹⁴ W/cm², ponderomotive energy 10-100 meV

- Field modulates the atomic potential at soft x-ray laser frequency
- e⁻ do not have time to tunnel free
- multi photon process and innershell electrons are important

Investigation of the damage threshold of optical components at the VUV TESLA FEL Phase I

J.Krzywinski ^{1,2}, A.Andrejczuk ^{1,3}, U.Hahn ², M.Jurek ^{1,2},J.Pelka ^{1,2}, W.Sobala ⁴, M.Sikora⁵, <u>R.Sobierajski</u> ^{2,6}

¹Polish Academy of Sciences, ²HASYLAB at DESY, Germany, ³University of Bialystok, Poland,⁴Institute of Nuclear Physics, Cracow,Poland ⁵University of Mining and Metallurgy, Cracow, Poland ⁶Warsaw University of Technology, Poland

Idea of the experiment interaction of intense soft x-rays with matter

- which multi-photon processes are observed
- cross sections (surface, bulk)
- which ions are prepared (charge state, electronically excited states)
- life time of intermediate states
- high-order harmonic generation

FEL Cluster-Experiment

Three Questions

- Which process allows the absorption of up to 20 photons/per atom?
- What is the ionisation mechanism?
- How can we explain the high charge states?

Coulomb explosion of clusters induced by multiphoton absorption

Time-of-flight photoelectron spectra

multi-photon and field ionization in clusters E_{kin} = 0-50 eV

single-photon ionization in atoms ($E_{kin} \sim 0.8 \text{ eV}$)

Present understanding

• Nanoplasma formation: inner ionisation of all atoms

- production of high charge states by field ionisation at the cluster surface
 - multi-photon absorption of up to 20 photons per atom in the cluster
- outer ionisation by combined multi-photon absorption and field ionisation

Coulomb explosion, hot ions cold electrons

Hubertus Wabnitz Joachim Schulz Peter Gürtler Wiebke Laasch Cluster experiment Tim Laarmann Anja Swiderski Klaus von Haeften

L. Bittner, R. de Castro, R. Döhrmann, B. Faatz,

J. Feldhaus, Ch. Gerth, U. Hahn, E. Saldin,

E. Schneidmiller, K. Tiedtke, R. Treusch, M. Yurkov

```
and the TTF-team
```

Summary and Outlook

- VUV-FEL provides light for first experiment high power and short pulses (<100 fs)
- new physics
- experiments in Phase II 2004 Workshop in November 2001 on first experiments innershell electrons time resolved studies Workshop warm dense matter June 8,9, 2002

