Transverse Spin Structure of the Proton Studied in Semi-inclusive DIS

Ulrike Elschenbroich

Outline

The Inner Structure of the Nucleon

- The HERMES Experiment
- Azimuthal Asymmetry Moments
- Interpretation of the Asymmetry Moments
- Conclusions

Spin of the Nucleon

Where does the spin of the nucleon come from?

Contributions from:

- spin of the valence quarks
- spin of the sea quarks
- spin of the gluons
- orbital angular momentum of quarks
- orbital angular momentum of gluons

Semi-inclusive Deep-inelastic Scattering

Cross section contains Distribution Functions and Fragmentation Functions:

$$\sigma^{ep \rightarrow eh} \sim \sum_{q} \mathsf{DF}^{p \rightarrow q} \otimes \sigma^{eq \rightarrow eq} \otimes \mathsf{FF}^{q \rightarrow h}$$

DF: distribution of quarks in the nucleon FF: evolution of (struck) quark into hadronic final state

Distribution Functions

3 DFs survive the integration over transverse quark momenta

Distribution Functions

3 DFs survive the integration over transverse quark momenta

Sivers Function f_{1T}^{\perp}

describes correlation between intrinsic transverse quark momentum $\vec{p_T}$ and transverse nucleon spin

- naïve T-odd function: allowed due to final state interactions (FSI): quark rescattering via a soft gluon
- non-zero Sivers function requires non-vanishing orbital angular momentum in the nucleon

Cross Sections

Cross Sections

$\dot{k'}$ unpolarised cross section: ϕ_S $\frac{\mathrm{d}^{6}\sigma}{\mathrm{d}x\,\mathrm{d}z\,\mathrm{d}y\,\mathrm{d}\phi_{S}\,\mathrm{d}^{2}P_{h\perp}}\sim\cdots\sum_{q}e_{q}^{2}\,\boldsymbol{q(x)}\cdot\boldsymbol{D_{1}^{q}(z)}\quad \underbrace{y}_{z}$

cross section for transversely polarised target:

$$\frac{\mathrm{d}^{6}\sigma^{\uparrow} - \mathrm{d}^{6}\sigma^{\downarrow}}{\mathrm{d}x \,\mathrm{d}z \,\mathrm{d}y \,\mathrm{d}\phi_{S} \,\mathrm{d}^{2}P_{h\perp}} \sim \dots \sin(\phi + \phi_{S}) \sum_{q} e_{q}^{2} \,\delta q(x, \vec{p}_{T}^{2}) \cdot H_{1}^{\perp(1/2)q}(z, \vec{k}_{T}^{2})$$
$$+ \dots \sin(\phi - \phi_{S}) \sum_{q} e_{q}^{2} \,f_{1T}^{\perp(1/2)q}(x, \vec{p}_{T}^{2}) \cdot D_{1}^{q}(z, \vec{k}_{T}^{2})$$

The HERMES Spectrometer

tracking detectors: momentum resolution < 2.6 %</p>

particle identification: positron/electron identification > 98 % RICH detector allows discrimination between charged π , K, p

zimuthal symmetries

Measurement of cross section asymmetries depending on the azimuthal angles ϕ and ϕ_S :

$$A(\phi, \phi_S) = \frac{1}{S_{\perp}} \frac{N^{\uparrow}(\phi, \phi_S) - N^{\downarrow}(\phi, \phi_S)}{N^{\uparrow}(\phi, \phi_S) + N^{\downarrow}(\phi, \phi_S)}$$

zimuthal symmetries

Measurement of cross section asymmetries depending on the azimuthal angles ϕ and ϕ_S :

$$A(\phi, \phi_S) = \frac{1}{S_{\perp}} \frac{N^{\uparrow}(\phi, \phi_S) - N^{\downarrow}(\phi, \phi_S)}{N^{\uparrow}(\phi, \phi_S) + N^{\downarrow}(\phi, \phi_S)}$$

$$\sim \dots \sin(\phi + \phi_S) \frac{\sum_q e_q^2 \ \delta q(x, \vec{p}_T^2) \cdot H_1^{\perp(1/2)q}(z, \vec{k}_T^2)}{\sum_q e_q^2 \ q(x) \cdot D_1^q(z)}$$

$$+ \dots \sin(\phi - \phi_S) \frac{\sum_q e_q^2 \ f_{1T}^{\perp(1/2)q}(x, \vec{p}_T^2) \cdot D_1^q(z, \vec{k}_T^2)}{\sum_q e_q^2 \ q(x) \cdot D_1^q(z)}$$

 $+ \dots$

zimuthal symmetries

 $+ \dots$

Measurement of cross section asymmetries depending on the azimuthal angles ϕ and ϕ_S :

$$A(\phi, \phi_S) = \frac{1}{S_{\perp}} \frac{N^{\uparrow}(\phi, \phi_S) - N^{\downarrow}(\phi, \phi_S)}{N^{\uparrow}(\phi, \phi_S) + N^{\downarrow}(\phi, \phi_S)}$$

$$\sim \dots \sin(\phi + \phi_S) \frac{\sum_q e_q^2 \ \delta q(x, \vec{p}_T^2) \cdot H_1^{\perp (1/2)q}(z, \vec{k}_T^2)}{\sum_q e_q^2 \ q(x) \cdot D_1^q(z)}$$

$$+ \dots \sin(\phi - \phi_S) \frac{\sum_q e_q^2 \ f_{1T}^{\perp (1/2)q}(x, \vec{p}_T^2) \cdot D_1^q(z, \vec{k}_T^2)}{\sum_q e_q^2 \ q(x) \cdot D_1^q(z)}$$

extract asymmetry amplitudes $A^{\sin(\phi+\phi_S)}$ and $A^{\sin(\phi-\phi_S)}$ by two-dimensional fit

Pion Collins mplitudes

polarisation component in lepton scattering plane reversed by photoabsorption:

polarisation component in lepton scattering plane reversed by photoabsorption:

string break, quark-antiquark pair with vacuum quantum numbers:

polarisation component in lepton scattering plane reversed by photoabsorption:

string break, quark-antiquark pair with vacuum quantum numbers:

orbital angular momentum creates transverse momentum:

.....

polarisation component in lepton scattering plane reversed by photoabsorption:

string break, quark-antiquark pair with vacuum quantum numbers:

orbital angular momentum creates transverse momentum:

$$\delta q > 0 \Rightarrow \sin(\phi + \phi_S) = \sin \pi/2 > 0$$

X

Pion Sivers mplitudes

ullet quarks with orbital angular momentum: observed quark momentum x_{obs} depends on impact parameter b

angular momentum: observed quark momentum $x_{
m obs}$ depends on impact parameter b

ig> quarks with orbital angular momentum: observed quark momentum x_{obs} depends on impact parameter b

quark distribution distorted perpendicular to nucleon spin

$$x = 0.3$$
:

- attractive FSI deflects quark towards centre of momentum
 - → left-right distribution asymmetry is converted into left-right momentum asymmetry

 attractive FSI deflects quark towards centre of momentum
 Ieft-right distribution asymmetry is converted into left-right momentum asymmetry

Conclusions

- First measurement of Collins and Sivers amplitudes for charged and neutral pions in semi-inclusive DIS.
- positive Collins amplitudes for positive pions, negative Collins amplitudes for negative pions.
- Artru model yields positive u quark transversity.
- Positive Sivers amplitudes for positive and neutral pions is the first signal of a non-zero naïve T-odd DF.
- \bigcirc Burkardt model yields positive orbital angular momentum for u quarks.

