

ESC Meeting 30-May-2006, DESY

Status VUV-FEL/FLASH

Holger Schlarb & Siegfried Schreiber DESY

- Overview
- Status and achievements
- Outlook

email:

holger.schlarb@desy.de

The VUV-FEL has a new name: FLASH

- Stimulated by the users of the VUV-FEL and the first exciting results obtained, the suggestion was made to find a compact name for the facility which is more attractive and easier to pronounce in different languages
- On 6th April 2006 the DESY directorate decided for the new name FLASH instead of VUV-FEL

Present Layout

Holger Schlarb, DESY ESC 30-May-2006, DESY

Radiation power growth exponential ...

 \Rightarrow Requires very high level of beam control

- ⇒ Good understanding of accelerator parameters
- ⇒ Small jitter tolerance (orbit, emittance, peak current)

Holger Schlarb, DESY ESC 30-May-2006, DESY

Production of high peak currents ...

- at high energy (127 MeV) electrons have 99.9993% $c_0 \Rightarrow$ Introduce energy chirp to e- beam
- ⇒ section with energy dependent path length using magnetic bunch compressors

Longitudinal phase space injector

- final design (2007) -

⇒ Uniform longitudinal compression

⇒ Small transverse projected emittance

Holger Schlarb, DESY ESC 30-May-2006, DESY

Longitudinal phase space injector

- present design (2005/6) -

Emittance measurements at the injector

Transverse Projected Emittance

- Continuous measurement of the emittance during a period of ~1.5 hours (1 nC, 127 MeV)
- In this example, the projected normalized 90% rms emittance is
 - $\epsilon_n = 1.6 \text{ mm mrad}$
- Jitter 2 3 % (rms)
 → agrees with the statistical error

Fitting method, 100% emittance Tomography, 100% emittance Fitting method, 90% emittance Tomography, 90% emittance

Energy measured after 1st bunch compressor

- Typical energy jitter: $dE/E = 5 \cdot 10^{-4}$ (rms) at 127 MeV
- Uncorrelated energy spread < 25 keV (resolution limited)
- Problem: drifts due to temperature effects → temperature stabilization of low level rf electronics etc in work
- \Rightarrow Energy jitter translates to timing jitter of electron beam due to chicane!

Beam Arrival Time

 Beam arrival time after acceleration measured with electro-optical decoding 200 fs rms

Important for pump and probe experiments

Undulator Section

FLASH is a single pass high gain FEL operating in the SASE mode

6 undulator modules length 4.5 m each Permanent NdFeB magnets B=0.48 T, K=1.23, λ_u = 2.73 cm Fixed gap of 12 mm

Electro-magnetic quadrupole doublets between modules → provides flexibility to receive different electron energies Lasing from 100 nm to 6 nm

(260 MeV to 1 GeV)

First Lasing at 32 nm

• First lasing at 32 nm achieved 14-Jan-2005

Single shot diffraction pattern

• FEL beam on a Ce:YAG crystal at 20 m from the undulator

Spectra of 2nd and 3rd harmonics

 \rightarrow Intensities about 0.5 % of fundamental

Holger Schlarb, DESY ESC 30-May-2006, DESY

Beam Energy and Wavelength

Holger Schlarb, DESY ESC 30-May-2006, DESY

26-Apr-2006: First SASE at 13 nm achieved

- About 4 hours after starting the SASE search shift
- Beam energy 693 MeV, SASE wavelength 13.1 nm
- Average Energy ~6 µJ/pulse, still in the exponential growth

Holger Schlarb, DESY ESC 30-May-2006, DESY

Accelerator studies to improve machine performance

Major improvements & investigations:

- Improve magnetic & RF reproducibility of machine
- Commissioning and systematic studies of BPM responds
- Systematic transfer measurements in accelerator (short in quad)
- Changed optics to low beta function at BC
- Studies of residual dispersion and compensation in accelerator
- FPG regulation to stabilize RF gun
- Beam based alignment in undulator section
- Long pulse operation at moderate beam loading
- Installation of dark current kicker
- Commission & software upgrades for BLM system

Radiation Level Undulator Section

Darkcurrent from rf gun and beam losses may result in high radiation doses in the undulator modules

Level of radiation depends on careful set-up of the beam

Level is constantly going down together with better tuning of the orbit and the commissioning of the machine safety system

Optics with reduced beta function

Example of Dispersion Correction

Dispersion correction in the undulators

Orbit response (mm/mrad)

 \rightarrow in this example, the horizontal dispersion has been reduced from 21.7 to 8.4 mm after 4 iterations by correcting the orbit

Holger Schlarb, DESY ESC 30-May-2006, DESY

Average SASE energy

 \rightarrow quite a big improvement since Nov 2005 due to streamlined organization of tuning shifts and development of procedures to keep good beam

Note:

some users do require high average radiation energy,

some users do even attenuate to 1 µJ level, may vary from shift to shift

Example of 11 days of operation

Average SASE energy/bunch averaged over some minutes

VUV-FEL Operation 1st User Period

First User Period 25-Jul-2005 to 26-Feb-2006

Beam time allocation

is divided between

- User FEL experiments
- FEL studies to further develop the FEL
- accelerator studies in a general sense, also for XFEL and ILC related studies

Schedule and Milestones

Improvement of the machine is on-going

- Stability
 - Injection: stability of laser profile, alignment injector section
 - Low level rf: feedbacks and stability
 - new FPGA based hardware with improved precision installed for RF gun
 - stabilize ambient temperatures
 - slow orbit, phase, and bunch length feedback
 - Improved procedures to obtain and maintain good SASE radiation
 - Investigation and fixing external noise sources (EMI)
 - Arrival time stability (LLRF & LbSyn.)
- Orbit and optics
 - Finished measurements of transfer functions: led to a much better understanding of optics and gave a big push in BPM improvements
 - Dispersion measured and partially corrected
 - Low beta function optics tested with success: 13 nm lasing within 4 h
 - Beam based alignment undulator section ongoing, BPM resolution now sufficient
 - Understanding non-linear beam dynamics started

Steps towards design goals

- Lasing at shorter wavelengths and switching between wavelength
 - 44, 32, 27 and 13 nm lasing achieved (limited by the present energy reach)
- Lasing with bunch train pattern and long pulse trains (> 30 bunches)
 - 100 kHz, 250 kHz, 1 MHz and lasing with < 30 bunches achieved</p>
- Lasing with higher repetition rate
 - Currently 5 Hz running, 10 Hz to be tested
- Repair and install modules
 - Old ACC3 to be replaced, ACC5 repair 4 tuners
 - Install new module ACC6 to reach 1 GeV ($\rightarrow \lambda$ =6 nm)
- Install 3rd harmonic cavity
 - downstream ACC1 to improve longitudinal beam profile
- Synchronization of facility to fs-level
 - Installation of laser based synchronization system (2007)
- Seeding option not before mid 2008

Summary

- The new name of the VUV-FEL is FLASH
- During the 1st user period 2005/6, we provided 2000 h of FEL beam for user experiments at 32 nm (64 % of scheduled)
- For the 2nd period 2006/7, 3360 h are scheduled
- The important milestone of lasing at the present energy reach (700 MeV, 13 nm) achieved
- Stability and performance in the last run much improved compared to earlier runs in autumn
- Ongoing improvements in various places: LLRF stability, Diagnostics and new timing system, EMI (power distribution, grounding, magnet power supplies etc)
- Installation of ACC6 and 3rd harmonic, replacement of ACC3 and repair of ACC5 scheduled 12-Mar – 30-Jun-2007