Multiple Ionisation of Clusters by intense soft X-rays from a Free-Electron Laser

Hamburg, November 7, 2002

- Introduction
- Interaction of intense pulses with clusters Coulomb explosion Multi-photon absorption
- Studies on clusters with short wavelength lasers

Why studies on clusters?

- size dependent properties
- transition from isolated atoms to the solid
- new materials (fullerenes, nanotubes..)

Hexagonal silicon cage around a tungsten atom Hiura et al PRL 86, 1733 (2001)

• interesting interaction with intense radiation Ditmire, Rhodes

Idea of the experiment interaction of intense soft x-rays with matter

• which multi-photon processes are observed

• which ions are prepared (charge state, electronically)

absorption and ionisation mechanisms

VUV FEL at the TESLA Test Facility

The VUV-FEL is a unique light source

- •Pulse length 30-100 fs
- •Wavelength shorter than 100 nm

TF FEL

- •Gigawatt peak power
- •Fully coherent beam

10.09

Optical non-linear processes Pump-probe experiments

Peak power of different light source

× peak power achieved at TESLA FELin 2001

1000 times higher peak brilliance than any other source at this wavelength

Interaction of Intense Soft X-rays with Matter

laser-atom process at I ~ 10¹⁴ W/cm², ponderomotive energy 10-100 eV

- P. Bucksbaum et al
- Field modulates the atomic potential at visible laser frequency
- Outer e⁻ has time to tunnel or overcome the barrier: 2U_p > I_p where U_p ~ I w-²

VUV FEL laser-atom process at I ~ 10¹⁴ W/cm², ponderomotive energy 10-100 meV

- Field modulates the atomic potential at soft x-ray laser frequency
- e⁻ do not have time to tunnel free
- multi photon process and innershell electrons are important

FEL Cluster-Experiment

Time of flight mass spectra of Xe atoms and clusters

- multiply charged ions from clusters
- singly charged atoms

2*10¹³ W/cm²

Dependence on the power density

Xenon clusters, 1500 atoms

7*10¹³ Watt/cm²

Kinetic energy of the ejected ions

- Quadratic dependence on charge
- Coulomb explosion
- Up to 3 keV kinetic energy
- Each atom in the cluster absorbs 10-20 photons

Questions and Answers

- Which process allows the absorption of up to 20 photons/per atom?
- What is the ionisation mechanism?
- How can we explain the high charge states?

Classical simulation of electron motion 78 electrons in Xe₁₃

Infrared light (800 nm) 10¹⁶ W/cm²
directed electron emission in the
polarization plane
→ field ionization

VUV (98 nm) 10¹⁶ W/cm² isotropic electron emission

→ photon assistet thermionic electron emission VUV (98 nm) 10¹⁴ W/cm²

calculated cross section $\sigma = 0.3$ - 1Mbarn for Xe experiment 10 Mbarn

Coulomb explosion of clusters induced by multiphoton absorption

Single molecule structure determination with X-rays from a FEL

With atomic resolution

Lysozyme

R. Neutze, J. Haidu et al., Nature 406, 752 (2000) Radiation damage and Coulomb explosion

Spectroscopy and structure determination of mass selected clusters

TTF2: Electronic structure (photoelectron spectroscop) XFEL: Geometry (diffraction)

Collaboration for TTF2

Rostock Hamburg Konstanz Osnabrück BESSY HASYLAB

Summary and Outlook

- VUV-FEL allows the study of non-linear processes in the VUV high power and short pulses (<100 fs)
- Coulomb explosion of clusters thermionic electron emission very efficient energy absorption
- Short wavelength free-electron lasers will open new and exciting sites for research on clusters electronic structure and geometry surface chemistry and catalytic reactions fs-dynamics

Hubertus Wabnitz	
Joachim Schulz	
Peter Gürtler	
Wiebke Laasch	Cluster experiment
Tim Laarmann	
Anja Swiderski	
Klaus von Haefter	1

L. Bittner, R. de Castro, R. Döhrmann, B. Faatz,

J. Feldhaus, Ch. Gerth, U. Hahn, E. Saldin,

E. Schneidmiller, K. Tiedtke, R. Treusch, M. Yurkov

and the TTF-team