Lattice Gauge Theory and High Performance Computing

Karl Jansen

- Introduction
- Static potential
 - why quarks are not free
 - what happens when they try to escape
- How it works

discretizing, simulating and back to the continuum

• More to compute

 α_s , m_{quark} , $\langle x \rangle$, ...

- Why we are not happy
 - chiral symmetry
 - Algorithms and machines
- Outlooks and Needs

Why Lattice Gauge Theory had to be invented

\rightarrow QuantumChromoDynamics

asymptotic freedom	confinement
distances $\ll 1 { m fm}$	distances $\gtrsim 1 { m fm}$
world of <mark>quarks</mark>	world of hadrons
and gluons	and glue balls
perturbative	non-perturbative
description	methods

non-perturbative methods: Lattice (in combination with e.g. chiral perturbation theory)

- conquering the challenge K.G. Wilson 1974
- demonstrating practicability M. Creutz 1980

Spreading the news around ...

using lattice methods in many areas different from QCD

- rigorous mathematical definition of field theories e.g. QCD, chiral gauge theories
- Electroweak physics e.g. Higgs mass bounds, strength of finite temperature phase transition
- spin models e.g. precise critical exponents
- Supersymmetry e.g. phase diagram, mass spectrum
- Quantum gravity e.g. matrix models, contruction of quantum gravity

What Lattice Gauge Theory can provide

- test of theory and validity of analytical methods
 → overlap with
 - perturbation theory
 - chiral perturbation theory
 - large-N expansion
 - sum rules
- precise values of many physical observables
 → overlap with
 - phenomenology
 - experiment
- understanding of strong interaction
 - semi-classical picture
 - monopoles, instantons

Example: electroweak phase transition

 \rightarrow test of perturbation theory

exciting possibility: baryon-asymmetry of the universe is generated in an early stage of the universe at the electroweak phase transition at $T_c \approx 250 {\rm GeV}$

Condition Sakharov;Kuzmin,Rubakov,Shaposhnikov

- rate of baryon generation \neq rate of baryon annihilation
- \rightarrow out of equilibrium phenomena
- → strong enough *first order* phase transtion

$\frac{v_T}{T_c} > 1$	jump of order parameter v_T large enough
v_T	Higgs vacuum expectation value
T_c	critical temperature

electroweak physics \Rightarrow use perturbation theory Buchmüller, Fodor, Hebecker uncertainty in perturbation theory triggered numerical lattice simulations of the electroweak sector (SU(2)-Higgs model)

- 4-dimensional simulations at finite temperature Fodor, Hein, Jansen, Jaster, Montvay
- 3-dimensional effective field theory simulations Kajantie, Laine, Shaposhnikov, Rummukainen

Other examples

- g-2: contribution of light by light scattering
- parton distributions at small momentum transfer
- matrix elements for (indirect) CP-violation
- Kaon decay matrix elements
- :

Test of the pieces

 $F(r) = \pi/12 \cdot 1/r^2 + \sigma$

4

 $(r \, [fm])^{-2} 8$

6

2

Dangerous lattice Animals

- \rightarrow discretization errors
- \rightarrow finite volume effects

A look at the continuum limit

the general idea of the continuum limit:

we keep fixed values of physical quantities such as a particle mass $m^{\rm phys}=m^{\rm lattice}/a$

 \Rightarrow for $a \rightarrow 0 \Rightarrow m^{\text{lattice}} \rightarrow 0$

since $m^{\text{lattice}} = 1/\xi^{\text{lattice}}$ in the contunuum limit the *lattice correlation length diverges*

a fixed physical size of a particle (e.g. the proton) receives a finer and finer resolution as $\xi^{\text{lattice}} \to \infty$

The continuum limit

fixed *physical* length L = Na = 1fm means

 $a = 0.1 \text{fm} \Rightarrow N = 10$

$$a = 0.05 \text{fm} \Rightarrow N = 20$$

 $a = 0.01 \text{fm} \Rightarrow N = 100$

number of lattice points: N^4 easily running out of computertime and memory solutions (?)

- keep $a \gg 0 \Rightarrow$ lattice artefacts
- keep $L < 1 \text{fm} \Rightarrow$ finite size effects

modern approach through theoretical advances

- → accelerate continuum limit: improvement programme
- → do not be afraid of finite size effects: make use of them

Acceleration to the continuum limit

(old) standard lattice action of QCD is

$$S_{\text{old}} = \underbrace{S_{\text{G}}}_{\mathcal{O}(a^2)} + \underbrace{S_{\text{wilson}}}_{\mathcal{O}(a)}$$

 \Rightarrow expectation values of physical observables

$$\langle O \rangle = \langle O \rangle_{\rm cont} + {\rm O}(a)$$

employing all lattice symmetries, equations of motions

 \Rightarrow only one more term in O(a) possible

(improved) standard lattice action Skeikoleslami and Wohlert

$$S_{\text{new}} = S_{\text{old}} + \underbrace{S_{\text{sw}}}_{O(a)}$$

$$S_{\rm sw} = a^5 \sum_x c_{\rm sw} \bar{\psi}(x) \frac{i}{4} \hat{F}_{\mu\nu}(x) \Psi(x)$$

with c_{sw} a *tunable* parameter

 \Rightarrow compute non-perturbatively c_{sw} such that O(a) cancel

 \Rightarrow (nota bene: if also the operator is improved)

 $\langle O \rangle = \langle O \rangle_{\rm cont} + {\rm O}(a^2)$

succesful Symanzik improvement programme of the

Example of physical quantity: avererage momentum $\langle x \rangle$ of non-singlet, twist-2 operator in a pion

Simulations so far mostly done in

The quenched approximation

- \rightarrow truncation of the theory
- \rightarrow simulations much cheaper
- \rightarrow surprisingly close to experimental values O(20%) deviation for many quantities

(A) Quenched QCD: no internal quark loops

(B) full QCD

mass spectrum

one of the major goals of lattice QCD

 \rightarrow compute hadron masses from first principles

define appropriate operators at zero momentum

$$O(t) = \sum_{\mathbf{x}} O(\mathbf{x}, t)$$

$$\begin{aligned} \langle O(0)O(t)\rangle &= \frac{1}{\mathcal{Z}} \quad \sum_{n} \langle 0|O(0)e^{-\mathbb{H}t}|n\rangle \langle n|O(0)|0\rangle \\ &= \quad \frac{1}{\mathcal{Z}} \sum_{n} |\langle 0|O(0)|n\rangle|^2 e^{-(E_n - E_0)t} \end{aligned}$$

Fundamental Parameters of QCD

• running coupling $\alpha_s(E)$

• running quark mass m(q)

non specialist introduction R. Sommer and H. Wittig, physics/0204015

Unitarity triangle

 \rightarrow sides of triangle constrained by results of lattice calculations

Moments of Parton distribution functions

example: lowest moment of twist-2, non-singlet operator in pion

quenched numbers:

Guagnelli, Jansen, Palombi, Petronzio, Shindler, Wetzorke

$$\langle x \rangle^{\text{experiment}} (\mu = 2.4 \text{GeV}) = 0.23(2)$$

 $\langle x \rangle^{\text{quenched}}_{\overline{\text{MS}}} (\mu = 2.4 \text{GeV}) = 0.30(3)$

Cost of numerical simulations

Quenched fermions

expensive part: fermion (quark) propagator D^{-1}

 $\langle \bar{\psi}(x)\psi(y)\rangle \propto D^{-1}b$

b is external source vector

 \Rightarrow need to solve

DX = b with D a complex matrix that is

• high-dimensional $O(10^6) \otimes O(10^6)$

• sparse (diagonal and a few subdiagonals) example: quenched $16^3 \cdot 32$ lattice: ≈ 100 Mflops for one fermion matrix times vector multiplication

having a 50 Gflops (sustained) machine \Rightarrow about 10 hours for a physical result at one set of parameters

realistic lattices today: $32^3 \cdot 64$ or $48^3 \cdot 96$ \rightarrow factor 10 to 100

Dynamical fermions

 \rightarrow additional factor of O(100)

First results with dynamical fermions

example: vector meson spectrum

JLQCD collaboration

- effects of dynamical quarks visible
- systematics not under control yet
 - continuum limit
 - finite size effects
 - *ρ*-meson decay

Dynamical fermions

generate new configuration by integrating the field equations in a Monte Carlo time τ

$$\begin{array}{llll} \delta\pi/\delta\tau &=& -\delta S/\delta U\\ \delta U/\delta\tau &=& \pi \end{array}$$

fields: gauge fields Uconjugate momenta π

numerical integration \Rightarrow non-vanishing step size $\delta\tau$

experience: $\delta au N_{ au} = 1$, $\delta au pprox 0.01$

discrete integration step size \Rightarrow integration error \Rightarrow global *accept/rejection step*

The difficulty:

 $\delta_U S \propto \left[D^\dagger D \right]^{-1} \Phi \ , \, \Phi$ Gaussian random vector

since $N_{\tau} \approx 100$ \Rightarrow simulations are O(100) more expensive than quenched approximation

Costs of dynamical fermion simulations

see panel discussion in Lattice2001, Berlin, 2001

Cost of 1000 dynamical $N_{\rm F}=2$ configurations

$$C_{\text{per}} = F_{\text{per}} \left(\frac{m_{\pi}}{m_{\rho}}\right)^{-z_{\pi}} \left(\frac{L}{a}\right)^{z_{L}} \left(\frac{r_{0}}{a}\right)^{z_{a}}$$
$$F_{\text{per}} = 6 \cdot 10^{6} \text{flops}$$
$$z_{\pi} = 6, \quad z_{L} = 5, \quad z_{a} = 2$$

given a 10 Teraflops computer, lattice spacing a = 0.1 fm, physical volume of 2 fm⁴

- for $m_{\pi}/m_{
 ho} = 0.5 \rightarrow$ 70 days
- for $m_\pi/m_
 ho=0.4
 ightarrow 270$ days
- do not simulate directly at the physical point
- combine simulation results with analytical methods to extrapolate

 \rightarrow chiral perturbation theory

question of overlap region of simulation and chiral perturbation theory major research topic is $m_{\pi}/m_{\rho} = 0.4$ sufficient?

From enemies to friends: Chiral symmetry on the lattice

chiral symmetry (exchange of massless left and right-handed fermions) very important to explain low-energy phenomena

in the continuum:

chiral symmetry expressed as $D_{\rm cont}\gamma_5 + \gamma_5 D_{\rm cont} = 0$

on the lattice: different anti-commutation relation

 $\gamma_5 D_{\text{latt}} + D_{\text{latt}} \gamma_5 = 2a D_{\text{latt}} \gamma_5 D_{\text{latt}}$ $\rightarrow \gamma_5^{\text{cont}} \rightarrow \gamma_5^{\text{latt}} = \gamma_5^{\text{cont}} (1 - a D_{\text{latt}})$

realizations of such a D_{latt}

- overlap operator (Neuberger)
- domain wall fermions (Kaplan, Shamir)
- fixed point action (Hasenfratz, Niedermayer, Wiese)

chiral invariant formulations of lattice QCD

- enjoy many properties of continuum theory
- ↑ can reach very small quark mass region
- \downarrow are O(100) more expensive than standard lattice fermions

Scalar condensate

data points at 7 masses on 3 volumes attempt a fit according to chiral perturbation theory

 $\Sigma_{\nu=\pm 1} = m\Sigma^2 V + O((m\Sigma V)^2) + C/a^2$

- ightarrow fixed topological sector $u = \pm 1$
- \rightarrow only two free parameters infinite volume scalar condensate Σ and divergence C

 \Rightarrow find strong evidence for spontaneous chiral symmetry breaking in QCD!

Algorithm and Machine Development

- $\circ~$: algorithm development: factor 20
- : FZ CRAY at Research centre Jülich
- □ : "Array Processor Experiment" (APE)
- machine development most important
- APE and CRAY equal performance (following both Moore's law)
- $cost(CRAY) \approx 10 \times cost(APE)$

⇒ worthwhile to build machines APE (*Europe*), QCDOC (*USA*), PC-Cluster

Japan

Computational Physics on Parallel Array Computer System \rightarrow CPPACS

collaboration of lattice physicists from Tsukuba

+ industrial partner Hitachi

614 Gflops peak speed128 Gbytes memory2048 Processing units

future development \rightarrow ?

USA

QCD on digital Signal Processor System \rightarrow QCDSP

600 Gflops peak speed50 Gbytes memory12 288 Processing units

future development \rightarrow QCDOC (QCD On Chip) collaboration of lattice physicists from Columbia University, RIKEN, BNL and UKQCD + industrial partner IBM

10 Tflops peak speed 40Gbytes on chip + O(1) Tbytes external memory O(10 000) Processing units \$1/Mflops sustained performance

Europe

Array Processor Experiment \rightarrow APE

APEmille installation in Zeuthen

550 Gflops peak speed32 Gbytes memory1024 Processing units

future development \rightarrow apeNEXT collaboration of lattice physicists from INFN, DESY and University of Paris Sud

10 Tflops peak speed
1-4 Tbytes memory
O(6 000) Processing units
1€/Mflops sustained performance

Future needs

large machines \Rightarrow collaborative efforts

<u>USA</u>

Scientific Discovery through Advanced Computing SciDAC

demand of about 40 Teraflops realized by

- QCDOC
- large PC-Cluster installations

evaluation of needs in Europe

- ECFA Report Requirements for high performance computing for lattice QCD: report of the ECFA working panel
 F. Jegerlehner et.al., CERN 2000-002, ECFA/00/200
- NuPECC Report *The NuPECC Working Group Computational Nuclear Physics* M. Baldo et.al., June 2000

LATTICE FORUM LATFOR

 \rightarrow special situation in Germany

Forum of German lattice physicists + association of groups in Austria & Switzerland

- common initiative of lattice physicists
 Universities, GSI and NIC/DESY
 → rich and diverse spectrum of physics
 - Fundamental parameters of QCD
 - Hadron spectrum
 - Structure functions
 - Physics of B-mesons
 - QCD thermodynamics
 - QCD at non-vanishing baryon density
 - Supersymmetry on the lattice
 - Algorithms
 - Chiral invariant lattice QCD
- detailled definitions of milestones
 ⇒ integrated need of 25 Teraflops (peak)
- LATFOR evaluation group development of benchmark suite for evaluating platforms apeNEXT, QCDOC, PC-Cluster, CRAY, Hitachi, IBM

The John von Neumann-Institute of Computing (NIC)

coorporation between **DESY** and research centre Jülich

• NIC shall provide supercomputer resources

Jülich: centre of general computational science Supercomputers: CRAY, IBM

• NIC research groups Many particle physics (P. Grassberger) Elementary particle physics (K.J.)

Numerical simulations

Monte Carlo integration

compute partition function (Feynman's pathintegral)

 $Z = \int_{\text{fields}} e^{-S}$

 $\int_{\text{fields}} = \prod \int \text{degrees of freedom}$

with degrees of freedom= ${\cal O}(10^6)$ - ${\cal O}(10^8)$

 \rightarrow Monte Carlo method with importance sampling (Metropolis, heatbath, over-relaxation, cluster, \cdots)

propagator measurement

$$\langle \bar{\psi}(x)\psi(y)\rangle \propto D^{-1}b$$

b is external source vector

 \Rightarrow need to solve

- DX = b with D a complex matrix that is
- high-dimensional $O(10^6) \otimes O(10^6)$
- sparse (diagonal and a few subdiagonals)

Final remarks

- ★ modern lattice computations
- \rightarrow do not only want to have bigger computers
- \rightarrow work hard on algorithmic improvements
- \rightarrow incorporate theoretical progress:
 - continuum limit $a \to 0$ \leftarrow only acceleration of approach to the continuum limit
 - have developed *exact chiral symmetry on the lattice:* important theoretical (numerical?) concept
 - get rid of effects of finite physical boxlength L

 <u>use</u> the finite extend of the box
 <u>Finite Size Scaling technique</u>

on the machine side:

- race between apeNEXT and QCDOC
- question: role of PC-clusters

big challenge is present transition towards dynamical fermion simulations

- exciting \rightarrow real physics
- powerful supercomputers are an essential ingredient
- combination with analytical methods are equally neccessary