The Zeuthen Photo Injector Test Facility

Anne Oppelt DESY

Extended Scientific Council

Zeuthen, 22-May-2003

Outline

- Motivation and goals of a photo injector test facility
- Results of PITZ 1
- Facility upgrade: PITZ 2
- Summary and Outlook

Photo injector test facility

<u>Main goal:</u> develop and optimize high quality electron sources for Free Electron Lasers and Linear Colliders

high brightness:

- small transverse emittance
- high beam current

high luminosity:

- extremely small beam size at the IP
- high beam power

different beam characteristics for optimal performance \rightarrow needed for VUV-FEL, XFEL, and TESLA LC

Motivation

"The photo injector determines to a large extend the performances and the potential for new science of the facility." (J.Schneider)

 → need to do specific R&D on photo injectors independent of serving concrete FEL / user requests
 → PITZ in parallel to TTF operation

PITZ in Zeuthen

- → significant contribution of Zeuthen to TTF and TESLA
- → get new technical + scientific capacities for TTF and TESLA
- \rightarrow opens long term research field for Zeuthen
- \rightarrow large project at Zeuthen
- \rightarrow near to BESSY and MBI

<u>Work program</u>

- compare detailed experimental results with simulations to improve theoretical understanding of photo injectors
- test and optimize rf guns for subsequent use at TTF2-FEL and TESLA XFEL
- test new developments (laser, photo cathodes, beam diagnostics, gun geometries)
- studies for TESLA XFEL (BC, CSR) and TESLA LC (flat beams, polarized electrons)

High quality beam production

short bunches, medium charge, low emittance~ 20 ps~ 1 nC~ 1-2 π mm mrad

laser driven **RF** photo cathode gun

 Cs_2Te

cathode

high power UV laser, required pulse structure normal conducting 1.5 cell standing wave cavity, π -mode

coaxial rf input coupler, high gradient at cathode, focussing solenoid field

The Photo Injector Test Facility at Zeuthen

PITZ phase 1

- commissioning of the facility is done
- gun preparation for TTF2 is ongoing
- first measurements were published

Current results of PITZ 1

- average power in the gun: up to 27 kW
- rf duty cycle: up to 0.9 %
- laser pulse length: (7 ± 1) ps FWHM
- rms laser spot size @ cathode: 0.3-1 mm
- QE of the photocathode: $\sim 0.5 \%$

Charge measurement

Momentum measurement

Beam size measurement

Emittance measurement principle

emittance ∞

beam size \cdot angular divergence

Measurements with EMSY:

- 1. screen
 - \rightarrow beam size
- 2. pepperpot / slit masks followed by a screen
 → angular divergence

Emittance measurement results

normalized transverse emittance: 3-4 π mm mrad @ 0.5 nC

PITZ 2

large extension of the facility and its research program with two main goals:

study the emittance conservation principle

produce and conserve low emittance beams using a booster cavity extensive R&D on photo injectors

improve and optimize all sub-systems including laser, cathode, gun, ...

Simulation with booster cavity

Preliminary layout of PITZ 2

22-May-2003

Laser system development by MBI

very small transverse emittances TESLA pulse structure (trains of ps pulses)

realized by

- development of Nd:YLF laser
- mixing two-channel system:

Requirements on the driving laser:

- powerful UV laser providing ps pulses
- rectangularly shaped pulses (20 ps FWHM)
- rise / fall times ≤ 2 ps
- homogenous transverse intensity profile
- laser parameters widely variable

Extensive R&D on optimized electron sources for FEL operation

- development, optimization, and characterization of new gun cavities, e.g. high duty cycle gun for high repetition rate FELs and ERLs, or rf-gun with improved gun geometry
- studies of photo cathodes (life time, quantum efficiency, nano structuring)
- comparison of detailed experimental results with simulations and development of simulation tools

Operation of PITZ

PITZ group, including guests & PhD students

- + colleagues from TTF
- + collaboration partners, e.g. BESSY
- + substantial support from technical groups @ Zeuthen:
 - electronics group
 - mechanical group
 - computing group
 - mechanical and electronics workshop
 - technical infrastructure

... even more ressources needed for PITZ 2

Collaborating institutes

Extension of the existing collaboration for PITZ 2:

BESSY Berlin, Daresbury Laboratory, DESY, HU Berlin, INFN Frascati, INFN Milano, INRNE Sofia, INR Troitsk, LAL Orsay, MBI Berlin, TU Darmstadt, TU Eindhoven, U Hamburg, YERPHI Yerevan, ...

<u>Summary – PITZ 1</u>

- high duty cycle and high power operation have been demonstrated
- beam characterization is ongoing
- gun will be installed at TTF2 in September 2003
- preparations for facility upgrade have been started

Outlook – PITZ 2

- study emittance conservation with booster and new beamline
- develop stable and reliable laser system with flat top temporal and transverse radial laser beam profile
- improve simulation tools for extensive beam dynamics studies
- develop and test a high duty cycle gun cavity and improve guns for VUV-FEL and XFEL
- do further studies on photocathodes
- other topics: GAN, BC, CSR
- study subjects like flat and polarized electron beams, important for TESLA LC

22-May-2003

Anne Oppelt

Milestones for PITZ 2

First results on laser development

actual measurement

first promising results

but:

- rise time
- flat top
- laser stability
- have to be improved !

presented by I.Will (MBI)

PITZ 2 project costs

Institute	DESY	MBI	BESSY	TUD	Sum
Investment costs (kEUR)	3061	1847	1062	78	6048
Personnel costs (kEUR)	6966	1407	1883	337	10598
Total costs (kEUR)	10027	3254	2945	415	16641
Needed man power (man-years)	58	21	27	3	109