

## Oscar González

Universidad Autónoma de Madrid

(Now at Purdue University)



DESY Ph.D. Award May,  $22^{nd}$  2003

# Tests of QCD and precise determinations of $\alpha_s$ at HERA

- Introduction and motivations
- QCD and jet physics in DIS
- Experimental setup
- Description of the analyses
- Results and determination of  $\alpha_s$

#### **Particles and interactions in Nature**

• The Standard Model of fundamental interactions is, at present, the most succesful theory to describe the experimental results in terms of the most fundamental constituents of the Universe.



#### **QCD** $\Leftrightarrow$ **Strong Interaction**

 $\rightarrow$  QCD describes the interaction between quarks and gluons through a "colour" charge whose intensity is given by  $\alpha_{s}$ .

In the same way as QED:



But gluons carry COLOUR CHARGE:

This makes differences wrt QED

 $\rightarrow \alpha_s$  decreases with increasing energy scale  $\leftarrow$ 

and this dependence is used to "explain" the behaviour of the strong interaction:

- at high energies
  - $\rightarrow$  asymptotic freedom ( $\alpha_s \rightarrow 0$ )  $\rightarrow$  confinement ( $\alpha_s > 1$ )

  - $\rightarrow$  Hard processes

- at low energies

 $\sim 3 \alpha_s$ 

- $\rightarrow$  Perturbative approach applicable  $\rightarrow$  Perturbative approach no longer correct
  - $\rightarrow$  Partons confined inside hadrons

#### Motivations to measure $\alpha_s$

 $\alpha_s$  has to be determined from experiment

Once the value of  $\alpha_s$  is known, it is possible to make predictions with (perturbative) QCD and compare with other experimental measurements

and also to estimate the SM predictions for other processes which involve any QCD contribution

Theoretical predictions in QCD

even for studies not directly related to QCD: Higgs searches, Grand unification

The uncertainties in QCD calculations are relatively large. Thus, individual determinations of  $\alpha_s$  are not as accurate as desired. To compensate this it becomes interesting to make independent determinations

- ... as many as possible.
- ... and as precise as possible.

Oscar González



There are 4 interaction points where the experiments are located

- H1 and ZEUS: *ep* interactions
- HERMES: Polarised e's are scattered on a fixed target (Nucleon spin studies)
- HERA-B: p's are scattered on a fixed target (study of B mesons)

#### *ep* interactions and kinematic variables

In the Standard Model the most important contribution to the inelastic interactions between protons and positrons is given by the diagram



and the variables commonly used to describe the process are

$$\mathsf{q}{\equiv}\;k-k^{'}\Longrightarrow Q^{2}=-q^{2}$$

 $egin{aligned} \mathbf{s} &= (p+k)^2 \ ( ext{center-of-mass energy}^2) \ y &\equiv rac{p \cdot q}{p \cdot k} \ x &\equiv rac{Q^2}{2p \cdot q} \ \end{aligned} egin{aligned} &\Rightarrow Q^2 &= sxy \ \end{pmatrix}$ 

In the deep inelastic scattering regime, the exchanged boson is virtual, i.e.

$$Q^2 >> 1 \,\, \mathrm{GeV}^2$$

#### Jet production

For high energy partons, the observed final-state hadrons are very collimated since the hadronisation process involves low-energy transfers.





#### Thus:

- We can define jets
- and identify jets  $\sim$  partons

Jets provide a "natural" way to study parton dynamics

For quantitative studies  $\rightarrow$  formal definition: jet algorithm



Tests of QCD and phenomenological models

## The ZEUS detector at HERA

**ZEUS** is a multipurpose detector designed to study the high energy interactions between electrons (positrons) and protons.



The most important components of the detector for the analyses are

The Central Tracking Detector (CTD)

- Trajectories of charged particles
- Vertex of the interaction

The Uranium Calorimeter (UCAL)

- Energies of the particles (kinematics)
- Particle identification (scattered e)

### Mean subjet multiplicity in NC DIS

The theoretical calculations are compared to the measured values in the data 1.9  $\langle n_{sbj} \rangle (E_{T,jet})$  $\langle n_{sbj} \rangle (y_{cut})$  $\rightarrow$  Parton/Hadron corr < 25 % Parton/Hadron corr < 15 % 4.5 ● ZEUS 96-97 (this analysis) 1.8 pQCD predictions (DISENT): (corrected to hadron level) pQCD predictions (DISENT): 1.7 ---- LO QCD (CTEQ4L) (corrected to hadron level) — NLO QCD: 3.5 ---- LO QCD (CTEQ4L) 1.6 CTEQ4A5 (α=0.122) - NLO QCD : 3 CTEQ4M (α<sub>s</sub>=0.116). 1.5 CTEQ4A5 ( $\alpha_{*}=0.122$ ) CTEQ4A1 (α,=0.110) 2.5 CTEQ4M ( $\alpha_{s}=0.116$ ) 1.4  $y_{cut} = 10^{-1}$ CTEQ4A1 ( $\alpha_{s}=0.110$ ) 2 ZEUS 96-97 1.3 (this analysis)  $Q^{2} > 125 \text{ GeV}$ 1.5  $E_{T,iet} > 15 \text{ GeV}$ 1.2  $Q^2 > 125 \text{ GeV}^2$  $1 - 1 < \eta_{int} < 2$  $-1 < \eta_{iet} < 2$ 10 <sup>-3</sup> 10 <sup>-1</sup> 10<sup>-2</sup> 20 30 40 50 60 1 E<sub>T,jet</sub> (GeV) **y**<sub>cut</sub>

Good description of the data by NLO QCD calculations

• LO QCD is not enough to describe the measured multiplicities

Next step: Determination of  $\alpha_s$ 



• Reasonable description of the data by NLO QCD calculations.

• Discrepancy of 10-15% comparable to the theoretical uncertainty.

Determination of  $\alpha_s$ 

#### The azimuthal asymmetry

An asymmetry is clearly observed and in good agreement with the NLO QCD prediction.

FOR THE FIRST TIME USING JETS



#### **Extraction of** $\alpha_s$

- Both analyses were used to extract the strong coupling constant
- $\Rightarrow$  Good agreement with world average.
- $\Rightarrow$  The uncertainties are comparable to those of the best determinations of  $\alpha_s$ .
- ⇒ Very precise determination of  $\alpha_s$  from the measures inclusive jet cross section at high- $Q^2$ :

 $lpha_s(M_Z) = 0.1212 \pm 0.0017 \; ({
m stat.})^{+0.0023}_{-0.0031} \; ({
m syst.})^{+0.0028}_{-0.0027} \; ({
m th.})$ 

⇒ Determination of  $\alpha_s$  from the measurements of the internal structure of jets in NC DIS (for the first time):

 $lpha_s(M_Z) = 0.1187 \pm 0.0017 \; ({
m stat.})^{+0.0024}_{-0.0009} \; ({
m syst.})^{+0.0093}_{-0.0076} \; ({
m th.})$ 

